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SUMMARY

This research project was one of three winners of the British Curriculum 
Forum’s Curriculum Investigation Grant for 2018–2019. Researchers 
Dr Ruth Trundley and Dr Helen J. Williams, both with an interest in the 
development of children’s understanding of early number, worked in 
collaboration with three teachers from two primary schools in south-west 
England to investigate how variation theory (Marton & Tsui, 2005) might be 
applied to the use of manipulatives (that is, any objects that can be moved 
and handled by learners) to support understanding of early number. The 
project’s aims were to increase awareness of current narratives of variation 
theory and to ascertain how applicable these might be to younger learners 
of mathematics, as little work has yet been done to explore its application 
to teaching and learning mathematics in the earlier years.

Variation theory was developed by Marton (with Tsui, 2005), who 
considered it to be at the heart of learning. It has become dominant 
in current mathematics discussions, and centres on drawing attention 
to underlying relationships in mathematics by focussing on the careful 
design and sequencing of mathematical tasks (Watson, 2016), including 
the use of multiple representations of a mathematical concept in order 
to draw out what it is and what it is not.

The project focussed on a selected group of 12 children aged between 
five and six years old (year 1 in English schooling). The mathematical focus 
chosen was the move from ‘counting-all’ to ‘counting-on’, which research 
indicates is critical for numerical understanding (Nunes & Bryant, 2009) 
but which is difficult to reliably establish (Thompson, 2008). Counting-on 
is the ability to establish the new quantity in a group in which the amount 
has been increased, without needing to recount the original group. This 
project explored which manipulatives might be effective in highlighting 
the essential features of this mathematical idea.

The project had two parallel threads.

• Three teaching sessions with each of four the sub-groups of three 
children, with one-to-one assessment sessions to begin and end the 
input, and with concluding individual assessments taking place five 
months later.

• Ongoing meetings with the teachers involved, taking account of their 
views – the underlying principle being that we (both researchers and 
teachers) were collaboratively working on rather than working through 
research (Trundley, 2019).
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It also had two phases.

• The researchers’ initial data collection period and the sharing of 
these findings.

• The teachers’ exploration of a chosen aspect of the findings over 
the following term, which led to some further findings of interest.

Within this project, grounded theory (Hammersley & Atkinson, 1983) 
underlay both the design and analysis of data. Both researchers involved 
have a social-constructivist view of learning (Howe & Mercer, 2007), which 
informed our decision to use qualitative, semi-structured interviewing with 
both children and adults throughout in order to allow both space for the 
voices of individuals involved and sufficient flexibility for the project to 
take account of our findings as they emerged.

Each researcher worked with two trios of year 1 children, each of whom 
were identified by their class teacher as being on the cusp of understanding 
counting-on. Each of the four groups of children used a different manipulative 
commonly used in classrooms. Assessments were focussed on exploring how 
the children thought about, understood and made sense of the mathematics 
rather than just numerical answers. 

We found that using the selected manipulatives to aid counting-on was far 
more complex than we anticipated, and agree with Thompson (2013) that 
children in year 1 are too young to be expected to be able to count-on 
reliably. However, the project identified two key sub-skills and understandings 
that appear to make a significant contribution to children’s ability to count-
on, and we believe that paying attention to these in Y1 would be valuable. 
Specifically, these are:

• understanding cardinality and abbreviating the augend 
(the original quantity)

• keeping track of both location in the number system and of 
the addend (the number being counted-on) using objects.

Understanding cardinality involves linking the numeral to the set it 
represents, and appreciating that adding to (or removing from) that 
set changes the number in the set. Abbreviating the augend includes 
subitising (immediately recognising a small quantity), building on 
this knowledge to recognise iconic images – such as those contained 
within structured manipulatives – and making use of this knowledge 
when counting.

Keeping track of where one is in the sequence of counting words relies on 
operating fluently within the number system. Keeping track of the addend 
involves a sophisticated double-count procedure, whereby both the 
addend and the overall quantity are accurately monitored.
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This research makes a substantial contribution to the existing literature 
on counting-on (see for example Secada, Fuson & Hall, 1983), and has 
implications for the teaching of counting-on to young children.
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1. BACKGROUND TO THE STUDY

During 2019, Dr Ruth Trundley and Dr Helen J. Williams worked in 
collaboration with two schools – Great Torrington Bluecoat Church of 
England Primary School in Devon, and St Ives Infant School in Cornwall 
– to investigate how variation theory (Marton & Tsui, 2005) might be 
applied to the teaching of early number in year 1 (children aged between 
five and six years old). 

The project had three aims.

• To increase understanding of how variation theory might be applied 
in relation to younger learners.

• To further understanding of how variation might foster young 
children’s developing mathematics sense.

• To develop pedagogical subject knowledge of the effects of conscious 
(and unconscious) decisions regarding resource-use.

The project ran during the spring and summer terms of 2019, and involved 
three teachers in three year 1 classes. The mathematical focus was on 
the move from ‘counting-all’ to ‘counting-on’, which research indicates is 
critical to numerical understanding (Nunes & Bryant, 2009). 

The drivers for this research were twofold. First was increasing 
awareness nationally of variation theory being key to developing pupils’ 
understanding of mathematical ideas, and a corresponding lack of 
research into the application of this theory to younger learners which 
meant that many approaches designed for older learners at key stages 
2 and 3 appeared to be surfacing in year 1. Second was awareness 
that learning is influenced by teacher choices regarding which practical 
resources to use in order to model mathematical situations. It is well 
established that manipulatives (that is, any objects that can be moved 
and handled by learners) are central to helping children develop 
understandings of mathematical situations (Thompson, 2010; Griffiths, 
Back, & Gifford, 2016, 2017; Gifford, 2017) because they, among other 
things, develop visual images and provide a bridge to abstract thinking. 
Often a wide range of both structured (Numicon©, bead strings) and 
unstructured (natural objects, beads, counters) manipulatives are used in 
year 1 mathematics teaching. This project explored which manipulatives 
are effective at highlighting the essential features of counting-on.
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2. RESEARCH DESIGN

This research project was focussed on exploring how the smallest changes 
in resource usage affect children’s learning. Decisions regarding exactly what 
to use and how to make best use of those resources, teaching session by 
teaching session, are less well-researched than the use of manipulatives more 
generally. In order to be most effective, choices regarding, for example, the 
size and colour of counters to be used should be deliberate and intentional. 

Grounded theory (Hammersley & Atkinson, 1983) informed both the design 
and analysis of data within this project. Research that employs grounded 
theory sets out to generate theory grounded in the data produced, rather 
than to verify theory. 

Our attention to the effect of small variations in resource usage coincides 
with a flurry of interest in variation theory: variation has, for instance, been 
identified by the National Centre for Excellence in Teaching Mathematics 
(NCETM) as one of their five big ideas of ‘teaching for mastery’. Our early 
research question reflected the theory’s newfound prominence. 

How can variation theory be applied to the use of manipulatives 
to support understanding of early number?

Early number is a complex area of mathematics, and we chose to focus on 
one particular element of it: counting-on. In a review of research literature 
about how children learn mathematics (Nunes & Bryant, 2009), ‘counting-
on’ was identified as a ‘developmental shift’. 

‘…[B]etween the ages of five and seven years, there is a 
definite developmental shift from counting-all to counting-
on: as children grow older they begin to adopt the more 
economic strategy of counting-on from the previously 
counted subset. This new strategy is a definite sign of 
children’s eventual recognition of the additive composition 
of the new set… [T]he developmental change that we have 
just described does suggest an improvement in children’s 
understanding of additive relations between numbers 
during their first two years at school.’

Nunes & Bryant, 2009, pp. 19–20

The decision to focus on counting-on led us to a further decision to focus 
on year 1 pupils, and from both our review of previous research in this 
area and our subsequent observations during the teaching sessions we 
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concluded that we should revise our research question.

What are the key sub-skills of counting-on, and how 
can variation with manipulatives be used to support 
development of these sub-skills?

This research project was led by two researchers, both with an interest in 
the development of understanding in relation to early number, who worked 
in collaboration with year 1 teachers in two schools, the details of which are 
set out in table 2.1.

Table 2.1 
Details of the two schools that participated in this research project

School name Great Torrington Bluecoat Church 
of England Primary School

St Ives Infant School

School details An early years specialist school with 
over 500 pupils aged 2–11

An infant school with just 
under 200 pupils aged 3–7

School location North Devon South-west Cornwall

Participating 
year 1 teachers

Chris Dayment
Misa Magee

Leone Pulley

Researcher Dr Ruth Trundley Dr Helen Williams

Each researcher worked with two trios of year 1 children, who were selected 
by the class teachers according to the following criteria.

• Can accurately count out up to 14 individual items.

• Are likely to work out the right answer – though not by counting-on – 
when answering questions such as the following.: 

• ‘There are four Christmas presents under the tree. I put another two 
more there; how many are there under the tree now?’

• ‘There are three Christmas presents under the tree. I put another 
five more there; how many are there under the tree now?’

• Are usually reliable attendees.

Different manipulatives were used with each of the four groups of children, 
as shown in figures 2.1–2.4: one unstructured resource (counters) and three 
structured resources.

We chose the three structured resources because they support children 
in recognising the augend without needing to count. (Throughout this 
report, we use augend to refer to the original quantity to which another 
amount is added, and addend to refer to the number that is added to 
another.) Counters were chosen as the ‘control’ in the sense that they 
are not structured but can be organised and arranged in different ways. 
All four groups used counters at some point during each session. 
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Figure 2.1 
Counters, used by group 1

Figure 2.2 
Numicon, used by group 2

Figure 2.3 
Bead strings, used by group 3

Figure 2.4 
Ten-frames, used by group 4



Learning from Variation: A BCF Curriculum Investigation Grant report  |  BERA10

The picture book 365 Penguins by Fromental and Jolivet (2006) was chosen 
as the context for the mathematics in the sessions because the story has a 
counting-on structure to it: one more penguin arrives each day.

A deliberate decision was made to involve a small world character, Milo, 
in these sessions, to allow the children to consider what someone new 
and external to them was doing and to comment openly on this, free of 
assumptions and preconceptions that might have been held in relation to 
classmates. Research into the use of puppets has shown that ‘children are 
keen to talk and explore alternative suggestions’ (Keogh & Naylor, 2009), 
particularly when the puppet needs some help: Milo sometimes made 
mistakes and was sometimes correct. The use of a small world character, 
rather than a puppet, meant it was easy for both the researcher and the 
children to manipulate the character, and he could sit and observe without 
being intrusive. Although the characters used in the two schools were not 
identical in appearance, both were named Milo and we planned for them 
to behave similarly.

Three teaching sessions took place with each group of three children; 
three one-to-one assessment sessions with each child were also 
held. The pre-teaching and post-teaching assessments used identical 
questions, and five months after teaching, the final assessment involved 
adapted questions (see appendix 1). Table 2.2 outlines the ideas worked 
on during each teaching session. 

Table 2.2 
Broad outlines of ideas worked on during each teaching session

Teaching 
session

Ideas

One Linking into the story context: representing numbers of penguins with counters.

Introducing Milo.

Recognising ‘five’ arranged in different ways.

Matching numbers of counters to numbers of penguins.

Matching counter arrangements: recognising ‘similar’ and ‘different’.

Familiarisation with the structure of a particular manipulative.

Using manipulative to represent ‘one more than five’.

Two Counting aloud from and to different, linked starting points.

Using manipulative to model ‘one more than’ different numbers between one 
and nine.

Generalising this to adding one to larger numbers.

Three Counting aloud from and to different, linked starting points.

Adding more than ‘one more than’: adding ‘three more’ to different amounts.

‘You can add anything onto anything by counting-on.’
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Each teaching session was sufficiently flexible for the researchers to 
respond to the children’s thinking, and each concluded with some free 
drawing and writing about ‘what we have learned’, in order to gather a 
wider range of reactions to the teaching.
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3. LITERATURE REVIEW

The following areas of research into mathematics learning and teaching 
were relevant to this study: variation theory, manipulatives and counting. 
While the existing literature informed our initial research design, because 
we employed grounded theory our review of relevant literature continued 
during and after our data collection.

3.1 Variation 
Variation is about drawing attention to underlying relationships in 
mathematics, and thus involves considering both the design and sequencing 
of tasks (Mason, 2011; Lo, 2012; Watson, 2016). Variation theory incorporates 
the use of multiple representations of a mathematical concept to draw out 
what it is and what it is not. It is argued that by paying attention to keeping 
some things the same while some things change, learners become more able 
to reason and make connections between what they know (NCETM 2017). 

‘This theory has been developed by Ference Marton 
(2005) and his co-researchers… He believes that learning 
only happens if there is some variation to discern and he 
sees learning as the discernment of variation. Because 
mathematical concepts are largely concerned with 
variables and structures, the theory applies fairly easily to 
learning about mathematical concepts and techniques… 
we need to consider invariance as well as variation and it 
turns out to be important to work out how much or how 
little variation is necessary for learners to notice what we 
hope they will notice.

Watson & Mason, 2006, p. 3

Gu, Huang and Marton (2004) identify two main aspects of variation: the 
procedural and the conceptual. They identify conceptual variation as helping 
students understand concepts from multiple perspectives, and procedural 
variation as helping students to connect what they know already with the 
object of learning.

Examples of procedural variation focus on varying numbers, as in the 
following example by the NCETM (2016).
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58 – 24 =       36 – 25 =       53 – 22 =       49 – 24 =       
57 – 25 =       46 – 24 =       64 – 23 =       48 – 25 =       
56 – 26 =       56 – 23 =       75 – 24 =       47 – 26 =       

Examples of conceptual variation often focus on contexts and pictures, as 
in figure 3.1.

Figure 3.1 
Examples and non-examples of triangles

Source: NCETM, 2016

Variation theory corresponds with many other theories of learning: its 
consonance with constructivism, for example, is exemplified in the work 
of Fosnot and Dolk (2002), which is built around ideas of variation. 

Although variation has been identified and disseminated by NCETM as part 
of their training in ‘teaching for mastery’, little if any research has yet been 
published that explores its application to teaching and learning mathematics in 
the earlier years, and the use of manipulatives. Such a lack may be associated 
with the fact that statutory schooling in England begins up to two years earlier 
than is common internationally and, as a result, most of the examples of 
variation given in the literature – often in the form of written practice questions 
and examples – are more suited to older learners.

3.2 Manipulatives 
Chen, Brownell and Uttal (2019) see the goal of early mathematics education 
as being to help children make sense of the relationship between concrete 
materials and the abstract concepts they represent. Detailed decisions 
regarding exactly which manipulatives to use, and how and when to use 
them, are not well researched. Teachers can be observed making many 
complex decisions on a daily basis while teaching number sense, and the 
smallest changes in resource usage can affect children’s learning. Resources 
must be chosen carefully in order to promote understanding (Chen et al., 
2019). However, ‘it’s true that most teacher decision-making is split second 
and grounded in perception, feelings, interpretations, and reaction’ (Fosnot 
& Dolk, 2002, p. 146).

a b c d e f
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3.3 Counting, cardinality and counting-on
Counting is complex and a considerable cognitive achievement for 
children (MacLellan, 2009). Research into young children’s understanding 
of the ordinal counting sequence stems from the work of Piaget. Piaget 
(1952) argued that children produce the right words in the correct order 
long before they understand what these numbers represent. Gelman and 
Gallistel (1978) described learning to count as including five interrelated 
principles: the ‘one-to-one principle’, the ‘stable-order principle’, the 
‘cardinal principle’, the ‘abstraction principle’ and the ‘order-irrelevance 
principle’. In order to become fluent counters, children need repeated 
counting practice over a number of years, in a variety of contexts in which 
counting is meaningful (Griffiths, Back, & Gifford, 2016). One key link for 
children to make is that between the number and the quantity it represents, 
and thus between the order of number words in the counting sequence and 
the magnitude of the quantity represented (Nunes & Bryant, 2009).

Cardinality has developed as an idea over the past 40 years. It is one of the 
five counting principles identified by Gelman and Gallistel (1978): ‘the last 
“tag” is also the number name for the whole set’. Sarnecka, Cerrutti and Carey 
(2005) expanded on this definition by including the ‘successor function’.

‘We suggest that the missing piece may be understanding 
of the successor function (the function describing how 
numbers are formed: N, N + 1, [N + 1] + 1..., etc.)...
We conclude that researchers should think of children’s 
cardinal-principle knowledge as a last word rule plus 
understanding of the successor function.’

Sarnecka et al., 2005, p.1

Trundley (2008) further expanded the meaning of cardinality.

‘Cardinality… [is] built on an ability to subitise and attach 
number names to small numbers. It includes recognition of 
the fact that these small numbers can be partitioned in a 
variety of ways, including previous number + 1, leading to 
an understanding of the relationship between successive 
numbers (“successor function”) as well as being able to say 
the number name for the whole set.’

Trundley, 2008, p. 20.

Nunes and Bryant suggest that counting-on, as opposed to counting-all, 
is a significant development. They describe it as ‘a sign that the children 
have linked their knowledge of part–whole relations with the counting 
sequence: they have understood the additive composition number’ (Nunes 
& Bryant, 2009, p. 4). Fuson’s analysis of counting-on (1982) identified four 
meanings for the single word used for the augend and different structures 
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for keeping track of the addend. Secada, Fuson and Hall (1983) built on 
this work through research into the use of counting-on in addition, and 
identified the significance of the sizes of the augend and addend. They 
also suggested useful teaching strategies to adopt in order to aid the 
transition from counting-all to counting-on when adding ‘m + n’: ‘when n 
is more than three the child must have some way of keeping track of how 
many words beyond m are being produced’ (Secada et al., 1983, p. 47)

This research informed our decisions. For example, we decided to keep 
the addend to three or fewer so that keeping track, which was not the 
focus of our study, was made easier. As our data emerged, the work of 
Fuson (1982) and Secada et al. (1983) became increasingly relevant, and 
informed our data analysis significantly.
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4. METHODOLOGY AND CONTEXT

4.1 Beliefs and values of researchers
Carr (1985) states that all educational research is underpinned by the 
researcher’s philosophical beliefs and educational values, and that 
researchers have a responsibility to identify and justify the values that are 
embedded in their work. Both researchers involved in this project have 
a social-constructivist view of learning. Social constructivism questions 
theories that regard children’s intellectual achievements as solely the 
product of individual discovery, and instead regards knowledge as created 
and shared among members of communities, with mathematical thinking 
at its heart, and considers learners to be agents in their own learning 
(Lerman, 2000; Howe & Mercer 2007). 

Decisions made in the teaching sessions and throughout the research 
reflected these beliefs: children were invited to make decisions, expected to 
explain their thinking and provided with opportunities to explore and reflect 
upon their own understandings through open mark-making. Assessments 
were focussed on exploring how the children thought about, understood and 
made sense of the mathematics rather than just numerical answers.

4.2 Case study and grounded theory
This project involved a case study of 12 children in year 1, all but one of 
whom had not yet reached their sixth birthday when the teaching sessions 
took place, during January 2019.

Table 4.1 
Birth month and year of participating children

Birth month & year Number of children 

October 2012 1

February 2013 1

March 2013 1

April 2013 3

June 2013 1

July 2013 2

August 2013 3
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Although the participating children were selected according to the criteria 
set out above in the introduction, they presented with quite different 
levels of understanding and previous experience in relation to counting 
and adding.

Grounded theory (Hammersley & Atkinson, 1983) informed both the design 
and analysis of data within this project. Research that employs grounded 
theory sets out to generate theory grounded in the data produced, rather 
than verify theory. Literature is reviewed after data collection; it is in fact 
additional data. Data collection and data analysis exist as two parts of 
a whole: analysis of the first set of data influences the collection of the 
second set of data, and so on. 

The data collection for this research was structured as follows.

Table 4.2 
Dates of and participants in each data collection activity

Date Activity Participants

Spring term, week 1 Assessment 1 Individual pupils

Spring term, week 1 Meeting with the children 
and sharing the text

Trios of pupils

Spring terms, weeks 1 & 2 Three half-hour teaching 
sessions 

Trios of pupils

Spring term, week 2 Assessment 2 Individual pupils

Spring term, week 7 Sharing of data analysis with 
teachers; teachers identify 
areas to explore

All teachers and researchers

Summer term, week 8 Assessment 3 Individual pupils

Summer term, week 8 Observation data collection 
from teachers

All teachers and researchers

In this research project, movement from one data collection activity 
to another was preceded by analysis of the existing data, with the two 
researchers working on the analysis in collaboration. For example, the 
activity with the trios of pupils in the Devon school was held a day or two 
after the same activity had taken place in the Cornwall school. This meant 
that not only did the data analysis shape the next activity, but the analysis 
of data from each school had an impact on the next data-collection 
activity in the other school.  

The starting point for the research was observation of the year 1 children. 
All the data activities were recorded using video, allowing the researchers 
to make observations both in real time and of the recorded data. These 
observations allowed the researchers to explore in depth the children’s 
understandings of the mathematics involved in the tasks set. This led to 
sorting of data, followed by defining and labelling – which in the case 
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of this research gave rise to the identification of a number of sub-skills 
related to counting-on. Relevant literature was identified to support the 
data analysis as the project progressed; as the data was analysed and 
observations sorted and labelled, existing research literature linked to 
each label was explored. The data was then re-examined in order to 
exemplify the definitions and labels given to each of the sub-skills. 

4.3 Ethics
The purpose of any study is a combination of both individuals’ professional 
gain and the advancement of knowledge and understanding more 
generally on behalf of the institution and the wider research community. 
The headteachers of the schools involved in the study recognised that 
school staff stood to gain potentially valuable knowledge once our findings 
were shared. Both schools were willing participants in this study. 

Prior to the start of the project, all adults involved were informed about the 
project and signed consent forms, in line with BERA’s Ethical Guidelines 
(2018). Written information was given to the carers of the 12 children 
involved, and they too signed consent forms. It was made clear on this 
initial consent form that all sessions would be audio- and video-recorded 
to aid analysis and write-up, but that no child would be identified in any 
reports emerging from the research. Carers were contacted at the close of 
the project and asked to give their consent for sections of the subsequent 
recordings to be used outside of the school and the project by the named 
researchers, appropriately and sensitively, for the purposes of professional 
education and academic study only. Consent was obtained to acknowledge 
the schools and the teaching staff involved. 

All data was processed in accordance with the BERA Ethical Guidelines 
(2018) in terms of our responsibilities to participants, obtaining informed 
consent, openness, disclosure and privacy. At the end of the project, we 
offered to organise a meeting to share project findings with interested 
parties; this offer was taken up in one school.

It was important to us that the voices of the school staff were heard in 
this project. It was essential that all understood that they were involved 
in the research and not being told what to do; that they were working 
on research tasks rather than working through the research (Trundley, 
2019). To that end, all meetings that took place were planned in a way 
that allowed us to take account of the views of the teachers involved. 
Our decision to use qualitative, semi-structured interviewing with both 
children and adults supported our ethical objectives in that it allowed 
space in which the voices of individual interviewees could be heard. We 
planned our questions in order to stimulate discussion and send the 
interviews off in directions thought important by interviewees. Moreover, 
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teachers made decisions about what they were going to work on with 
their classes during the time between the end of our input (January 2019) 
and the final meeting to close the project (June 2019). This self-directed 
work stemmed from the discussion points that had emerged from our 
research – namely, abbreviating the augend and keeping track – and 
which are explored in some detail in the following chapter. The teachers’ 
findings are included in section 5.3. 
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5. FINDINGS 

Through analysis of the teaching sessions, we identified sub-skills and 
understandings that make a significant contribution to being able to 
count-on. The two key sub-skills and understandings observed, which 
we will explore here, are:

• understanding cardinality and abbreviating the augend 

• keeping track.

In the transcripts that follow, ‘R’ refers to ‘researcher’, and ‘C’ to ‘child’.

5.1 Abbreviating the augend

5.1.1 Understanding cardinality and abbreviation of the augend

It has always been difficult for young children to distinguish clearly between

• the last object counted as five, and

• the whole group of objects as five (Gattegno, 1964).

Understanding cardinality is complex. Within our study we observed 
that understanding of cardinality is linked to counting-on through the 
notion of abbreviating the augend to a single number (Fuson 1982). 
In order to count-on, children must be able to use one number as a 
label for the augend – that is, to use one number to represent the 
whole set. This means recognising, understanding and trusting the 
cardinality of the number for the set that forms the augend, and entails 
understanding that the separate items in the set are represented by 
and abbreviated to one number. There is no need to count the separate 
items in order to know how many there are in the set. 

The ways in which both augend and addend were represented was important 
in supporting the year 1 children participating in our study to make sense of 
the mathematics. The three structured mathematics resources that we used in 
the project (Numicon, bead strings and ten-frames) were chosen specifically to 
support children to abbreviate the augend.

During our study, which focussed on using objects to represent penguins, 
we identified four different ways of noticing the cardinality of the augend 
without needing to count, leading to abbreviation:
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• perceptual subitising

• recognising iconic representations

• recognising composition

• reading symbols. 

Perceptual subitising
Perceptual subitising involves recognising a small number without counting 
or using other mathematical processes (Clements, 1999). 

Figure 5.1 
Examples of small groups of objects that children might be expected to subsitise

When children subitise, they can see the value of the group without 
needing to count, and are able to say how many objects there are within it 
(abbreviating). Looking at figure 5.1, for example, children may ‘see’ that 
there are three beads, three fish, two people and three pawns without having 
to count. The design of this study excluded exploring subitising with the 
augend; a deliberate choice was made to, throughout the project, start with 
numbers which could not be subitised . Use of subitising was evident within 
recognising composition (see below).

Recognising iconic representations
Recognising iconic representations means recognising the value of the group 
by virtue of its familiar representation. 
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Figure 5.2 
Three iconic representations of a group of five

Figure 5.2 shows iconic representations of ‘five’, including five on a dice 
and five fingers on one hand. However, iconic representations can also 
describe familiar arrangements: for example, the pawns in figure 5.2 are 
arranged like dots on dice.

R How do you know that’s five?

C I already know because a five looks like that on a dice. 
(Session 1, group 4 [ten-frames])  

Figure 5.3 
Three iconic representations of ‘five’ that use structured mathematics resources

Iconic representations also include structured mathematics resources: for 
example, ‘five’ can be recognised as a Numicon plate, one complete row 
of a ten-frame, and one complete block of colour on a 20-bead string, as 
shown in figure 5.3.

Familiarity with structured resources such as these allows children to notice 
how many are showing, and to create a set of a given size, without needing 
to count, as in the following example.

R Can you show me five penguins on the bead string?

C1 That is so easy.

C1 moves one group of five in one movement.

R How do you know that’s five?
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C2 Because you just move one lot and you know that’s five. 

R Why was that easy?

C1 Because you just needed to take one away… one kind 
[referring to one block of colour].

R Can you tell Milo why it is easy to find five on the bead string?

C3 Because we know it’s five when you have one of the colours.
(Session 1, group 3 [bead strings])

Recognising composition
To recognise composition is to recognise a number by recognising parts 
of the number. There were many examples in which children saw a number 
partitioned (usually into two parts), recognised each part (through either 
subitising or recognising an iconic representation) and knew the number 
made by the parts together. The children often expressed this using the 
language of addition. 

Having just made ‘five’ on the bead string the children were asked to 
make ‘seven’.

C That’s easy.

R Why is that easy?

C Because I just need to add the two… because five plus two 
equals seven.

(Session 1, group 3 [bead strings])

Figure 5.4 
An example of how the use of a bead string can aid the recognition 
of composition

One child (C1) puts a row of white ‘penguins’ and a row of yellow 
‘penguins’ in the ten-frame.

R How does [C1] know that is ten?

C2 You got five and she got five equals ten.
(Session 1, group 4 [ten-frames])
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Figure 5.5 
A row of white ‘penguins’ and row of yellow ‘penguins’ in a ten-frame

The structured resources supported the children to see how many there 
were without having to count, and the children were able to use this to 
abbreviate the augend when focussing on one more. Understanding ‘one 
more’ is referred to as the ‘successor function’ as part of the principle of 
cardinality (Sarnecka et al., 2005). 

We shared the counting-on language that had started to appear in some 
children’s explanations in the context of ‘one more’. This was written on 
the board and used to support the children to think and talk about their 
thinking, as in the following example.

R Five penguins and one more arrives.

C Six!

R How do you know there will be six now?

C Because ‘five, six’; after five is six.

R writes on the board, ‘After 5 is 6’.
(Session 1, group 4 [ten-frames])

However, that children recognise a representation does not necessarily 
mean that they will choose to abbreviate the augend and count-on when 
the number of objects change.

One child recognised that a single block of colour on the bead string 
represented five. 

When two were added he chose to count all the beads in twos. 
(Session 1, group 3 [bead strings]) 

In the context of our study, looking at the use of counting-on to add, in 
cases in which the augend was small enough to be recognised in one of 
the three ways described above (that is, perceptual subitising, recognising 
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iconic representations or recognising composition), counting-on was not 
appropriate because the additions either involved applying a known fact or 
the children could ‘see’ the total from their representation of both augend 
and addend. 

In order to move the children to generalise, both about abbreviating the 
augend and connecting the addend by counting-on, we realised that although 
the addend needed to be small (we chose to restrict it to three or less) the 
augend needed to be larger so that the addition involved an unknown number 
fact. We decided that while we still wanted to have objects representing 
the augend, these needed to be presented in a way that did not require 
understanding of place value and that could not be easily counted (counting 
would take too long), forcing a need for an alternative, more efficient method. 
This led to the fourth way of recognising cardinality leading to abbreviation.

Reading symbols
In the context of this study we introduced a transparent tub of counters 
with a number label attached. The children used the label as an 
abbreviation for the augend.

Figure 5.6 
An example of the use of symbols (a number label in this case) as an 
abbreviation of the augend

Tub with label ‘45’. Milo counts three more penguins and says it is 
forty-seven.

C (looks at the tub) Forty-five. (Looks at the counters.) Forty-six, 
forty-seven, forty-eight.
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R What did Milo do wrong?

C We already counted this number. [Points at the ‘45’ label.]
(Assessment 2)

The importance of using and reading symbols arose from the data 
collected. We suggest that it is fundamental to understanding cardinality: 
it allows children to understand that a set being labelled ‘45’ (for instance) 
means that, if all the elements of the set are counted, the count would go 
from one to 45, meaning that there is no need to count the set. As one 
child said in her second assessment, in reference to a tub labelled 24 (see 
figure 5.7): ‘How about we get all the counters out: there’ll be twenty-four’. 
This understanding does not require an understanding of the place value 
of the number involved, or even an ability to count accurately. Rather, it is 
about understanding the cardinal value of the number.

Figure 5.7 
Another tub labelled to indicate the number of counters it contains

Fuson (1982) pointed out that when children do not understand the 
cardinality of the augend, errors occur when counting-on, as they are only 
attending to the word sequence (see section 5.2 below, on ‘keeping track’). 
Having counters in a transparent tub supported the children in understanding 
that the number was more than a number in a count: it was representing a 
set (which they could see) that was being added to. Looking at the tub when 
thinking about the augend was key to the children successfully adding to 
larger numbers by counting-on. 

Linked to this is the importance of the abbreviation of the augend, and 
of how that abbreviation is used when counting-on. Sometimes the 
children paused and then counted-on without saying the abbreviation 
for the augend. 
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An ‘11’ card is on show.

R There are eleven penguins and one more comes along.

C Twelve.

R How do you know it will be twelve?

C Because I counted off of eleven.
(Session 2, group 3 [bead strings])

In other instances, children stated the name on the label and then counted-on.

An ‘11’ card is on show.

R: Ding dong – one more arrives. How many are there?

C Eleven, twelve. 
(Session 2, group 4 [ten-frames])

The critical observation here is that it is not about either saying or not 
saying the abbreviation for the augend. Rather, it is about what the child 
understands about it when they are saying it: are they making it part of the 
count when counting-on, or are they acknowledging that it is the name of 
the set that already exists and then counting-on? During the study children 
were observed shifting from using the name of the augend as just part of 
the count to using it to establish the cardinality of the augend. This shift 
was essential to understanding the abbreviation of the augend and how to 
use this in order to add by counting-on.

5.2 Keeping track
In the course of our analysis of the teaching sessions it became clear that 
an understanding of the pattern of the number sequence was significant 
to the ability to count-on, and that our children often found this 
challenging. While this might seem obvious, in order to count-on from 
different starting points children needed to be aware of ‘where they were’ 
within the number sequence, rather than simply the number that came 
‘next’. An additional necessary skill, called upon simultaneously, was the 
ability to keep track of exactly how many more we were counting-on, and 
thus when to stop counting – we refer to this here as ‘keeping track of 
the addend using entities’.

These two related skills are discussed here under the heading ’keeping track’. 
We will first discuss the ordinal aspect of counting, before considering the 
issue of how the ordinal and cardinal aspects of counting-on interrelate. 
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5.2.1 Keeping track of position within the number system 

Numbers and quantities are not entirely synonymous (Nunes & Bryant, 2009). 
While numbers spoken or written in order – ordinal numbers – indicate the 
position of a quantity in the counting sequence, they can be generated 
without knowledge of the amount they represent. In order to count at all, 
a child has to remember some words in the correct order and then be able 
to access the patterns in our number system in order to generate others. To 
produce any counting sequence, they need to recognise the aural patterns: 
for example, sixty-one, sixty-two, sixty-three and sixty-one, sixty-two, sixty-
three, as well as the symbolic/visual link between 1, 2, 3 and 61, 62, 63. 
Moreover, in order to count-on, a child needs to keep track of exactly where 
they are within the counting sequence – that is, once they know the number 
to start counting from, such as twenty-four, they also need to know that the 
words to be said next will be twenty-something, as well as something-five, 
something-six, and so on. Thus, they must be aware of and make use of two 
patterns simultaneously. 

We documented a number of occasions in which children were able to 
operate with some aspects of the pattern of the number sequence, but 
not all of them. For example, the children were asked to choose a number 
from a selection written on the board, write their chosen number on a sticky 
note, and count-on three (see figure 5.8). 

Figure 5.8 
Sticky notes produced by children asked to choose a number and then 
count-on three
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In the top-left sticky note shown in figure 5.8, the child appeared to be 
operating with 18 as eight:

C5 I still don’t know what number I choosed [sic]. I still don’t know 
what this number is.

R You chose eighteen.

Pause.

C5 Eleven. I think it’s eleven.

R You do? So shall we try it together? Eighteen…

C5 mouths quietly alongside as we move three counters.

R …nineteen, twenty, twenty-one. Twenty-one!

C5 Twenty-one.
(Session 3, group 2 [Numicon])

On the same occasion a different child counted-on three from 11 as 
‘twelve, thirteen, forty’, confusing the similar sounding ‘fourteen’ and 
‘forty’. Another child (in session 3, group 1 [counters]) read the number 
on the cover of the book 365 Penguins and counted-on: ‘three hundred 
and sixty five, three hundred and forty five’. This child knew to keep some 
counting words constant, but changed the wrong numeral. Such mistakes 
are hardly surprising given both the complexity of our counting sequence 
and the age of the participating children. 

We argue that the ability to generate the counting sequence from differing 
starting points is to some degree distinct from an understanding of the 
quantity that each successive number represents, as described by Nunes 
and Bryant (2009). Gattegno (1970) writes of learners becoming aware of 
auditory features – ‘regularities’ of numbers such as six and sixty – and 
of noticing patterns which, with practice, generate more numbers in the 
counting sequence. 

‘I discover that I need, indeed, only a small number of 
sounds and a small number of principles in order to be as 
good as my elders in uttering the first ninety-nine numerals.’

Gattegno, 1970

Counting aloud in unison, starting and stopping in different places and 
discussing the ‘start’ and ‘stop’ numbers was a teaching strategy we 
introduced in the second and third teaching sessions in order to draw 
the children’s attention to both the pattern of the number sequence 
and where they were within it. The counting strings that we chose were 
linked: for example, we started at five and stopped at 12, then started 
at 25 and stopped at 32, before starting at 105 and stopping at 112. 
‘Start’ and ‘stop’ numbers where written on a whiteboard.
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While planning, it quickly became apparent to us that it was difficult to select 
linked sequences of consecutive counting numbers that clearly exposed the 
aural/oral pattern of the counting sequence. Although we needed to cross 
over 10, we made a deliberate decision to avoid oral counts residing between 
11 and 19, due to both lack of regularity (eleven, twelve) and the mismatch 
between its observable regularity (‘1’ followed by ‘5’ in ‘15’), and its orality 
(fif-teen), although in the event children chose to count from these numbers 
themselves. A further irregularity was that numbers ‘twenty’ and ‘thirty’ – 
number names early in the counting sequence – are not as transparent as 
those later in the sequence, such as ‘six-ty’, ‘seven-ty’ ‘eight-ty’ and ‘nine-ty’.

All irregularities are difficult to completely avoid. We decided to count 
aloud including the sequence of ‘twenties’ and ‘thirties’, and to vocally 
emphasise the ones-digit rather than the tens-digit, by saying ‘twenty-five, 
twenty-six, twenty-seven’ and so on in order to draw children’s attention 
to the familiar changes in the ones digit while the tens digit remained 
constant within each decade. 

Milo was the character who ‘told us’ which numbers to start counting from 
and to. When he ‘jumped’ into the air we were to stop counting. Children, 
once asked, were quickly able to name the numbers at which we stopped 
and started, and keen to see how numbers were written as well as to write 
these numbers themselves. 

Milo ‘whispers’ to R.

R: Forty-seven. Forty-seven he wants us to start at. Shall I write forty-
seven up? 

Nods and some laughter. 

C2 What number did we stop at?

R We stopped at sixteen and we started at seven, now he wants us 
to start at forty-seven. 

C1 Four.

R (writing) Four-ty-seven.

C2 Oh that’s a big number!
(Session 3, group 2 [Numicon])

During group 2, session 2, the children were shown a ‘7’ numeral card and 
asked which Numicon plate ‘shows one group of seven penguins’: all three 
children immediately selected a 7-plate. They were then asked, ‘What 
if – ding dong – one more penguin comes along, one more? How many 
penguins would there be?’

C3 It’s going to be eight, ‘cos after seven is eight 

R What if there are twenty-seven penguins and one more comes along? 
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C3 There’s still eight

R How do you mean, still eight?

C3 Eight, seven, eighteen 

R What do you [C6] think?

C6 Twenty-eight.

R What do you think about what [C6] said?

C3 Twenty-eight, ’cos twenty, eight. When you get your twenty, it 
was twenty-seven, add on one.

(Session 2, group 2 [Numicon])

Recognising and utilising the patterns underlying the structure of our 
number system is key as it allows us to count on (and back) from any place 
without requiring understanding of the place-value (make-up) structure of 
a number. However, in order to count-on exactly three more from 24, for 
example, it is not enough for children simply to say the correct count words 
(‘twenty-five, twenty-six, twenty-seven’) in the correct order – they also 
need to know when to stop saying these words. They must keep track of 
how far they are along this particular sequence of counting words.

5.2.2 Keeping track of the addend using entities

This is where the ordinal and cardinal aspects of counting-on interrelate. 
It is an extension of an earlier counting stage, in which our counting 
words are matched one-to-one, using the hand or finger, with the object 
to be counted. In order to keep track of how many we have counted so 
far, what we say must ‘keep up’ with our finger movement and recognise 
that the last one we touch also names the quantity of the entire counted 
group (cardinality). 

Keeping track of the addend while counting-on combines several 
different skills:

• saying the right words in the right order

• starting the count other than from one or zero

• not ‘seeing’ (that is, imagining) the original quantity (augend) 
to be counted

• ‘marking’ in some way the amount being counted-on (addend) 

• understanding that the last number said denotes the final 
quantity or position.

When counting-on three from seven, I might state ‘I have seven’, hold up 
or imagine three fingers, and say, ‘Eight, nine, ten. That’s ten’. In other 
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words, although I am holding up three fingers I am not saying ‘one, two, 
three’, nor am I naming the cardinal value of the group as three. This is 
sophisticated, as the child is required to match two different strings while 
not beginning their count at one. Moreover, the count does not match 
the quantity observed. We would argue that any counting-on employs a 
‘double counting’ procedure (Thompson 2010). 

Baroody (1987: 142) categorises using fingers or manipulatives to represent 
the cardinal value of (at least) the addend as concrete counting. Our study 
focussed on having the number to be counted-on, up to three, represented 
by objects. Between the four groups, we varied the objects used to 
denote penguins being added, one at a time, to a known amount. We also 
documented examples in which children attempted matching the count to 
their fingers, with varying degrees of success.

Counters (group 1)
In order to separate and distinguish between the augend and addend, 
each child had one colour of counter for each. Counters allowed each 
child choice in how they arranged the augend without having to recount 
these, and ‘to quickly see how many are there’. This drew on their 
subitising knowledge. During session 1, one child had her plate of seven 
yellow counters arranged as a dice-six with one in the middle, with three 
green counters alongside. She said, ‘We’ve got seven, and three more 
makes ten. We’ve got seven and we’ve got [touching the three yellow 
counters one at a time] eight, nine, ten’. With the children having made 
these arrangements themselves, there was possibly less need to recount.

We also tried two ways of adding on counters with all four groups:

• laying out the addend one at a time while saying the counted-on number 
words (for example, ‘twenty-five, twenty-six…’) as they were placed

• counting out the addend (‘one, two, three’) before then counting-on 
three from (for example) twenty-four (see figure 5.9).

Both of these approaches were successful with smaller addends when the 
researcher was demonstrating. Laying counters one at a time requires a 
child to grasp when to stop, by keeping track of how many they have laid 
out while saying the count-on number sequence. This is more sophisticated 
than first placing the whole amount to be added on and then using these 
to count-on, because at the end of the row of counters you stop saying 
the number words. However, when counting-on larger addends it is more 
difficult to keep track of the correct amount if additions are made one at a 
time. During teaching session two, having found that children were keen 
to write their own numbers, we decided to write a selection of numbers on 
the board and invite them to choose a number, write this on a sticky note 
and to count-on three from their chosen number (this later developed into 
‘choose your own number to write down’, at which point the numbers they 
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counted-on from became much larger). The group using the counters all 
chose to first count out the second quantity in total each time, before using 
these as markers to count on from their chosen augend. The choosing 
and writing of numbers of their own was very successful in terms of their 
engagement, their ability to count-on a small amount to these larger 
numbers, and their risk-taking in experimenting with much larger numbers 
than we would have selected for them.

Figure 5.9 
Twenty-four counters in a labelled tub, with three loose counters, 
representing the augend and addend respectively

Both reading and writing two-digit numbers involves matching how we say 
and how we write the digits, without necessarily needing to understand the 
place value of the numbers at this stage. It entails generalising the known 
sequence of numerals 0 through 9. 

Numicon (group 2)
None of the three structured resources were useful for representing the 
augend when it was larger than 20, as for two-digit numbers all three rely 
on an understanding of place value, which was not our focus, whereas 
counters rely on an understanding of counting. 

Of the three structured resources, only Numicon was useful for representing 
the addend in order to keep track when adding on to larger numbers, because 
the three-plate maintains its ‘threeness’ wherever it is placed (next to a tub of 
counters, for example) whereas both the bead string and the ten-frame involve 
more than three even when representing three, which adds unnecessary 
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complexity to the image.

During session 3, each child in group 2 took one Numicon three-plate to 
represent the addend ‘count-on three’, then chose and recorded a two-
digit number from which to count on. This was successful, as the Numicon 
kept the addend constant while the augend changed.

Figure 5.10 
An example of the use of a Numicon three-plate to represent an 
addend of 3

5.2.3 Use of fingers

The children’s level of success using fingers depended on the sizes of the 
addend and augend, as well as their confidence with and knowledge of 
the counting sequence. Generally speaking, and unsurprisingly, the larger 
the numbers involved the more problematic it was keeping track using 
their fingers.

The task is to add three more to five.

R Can you show us what you did with your fingers?

C6 (Holds up right hand with all five fingers raised.) Five.

C6 holds up left fist and unfolds fingers one at a time while counting.

C6 Six, seven eight. Eight!
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C5 That’s exactly what I did!

R We don’t need to count these five fingers do we?
(Session 3, group 2 [Numicon])

A little later in this session the children were asked how many penguins 
there would be if there were 12 already and three more came along. Two 
children (C6 and C3) both held up their right-hand thumbs. 

C6 Fifteen.

R Thirteen.

All (rhythmically and without reference to their fingers) Fourteen, 
fifteen, sixteen, seventeen, eighteen, nineteen, twenty

They all stop.

None of the children managed to keep track using their fingers on this 
occasion as they were still focussed on reproducing the counting sequence 
through the teens.

During the second assessment, C6 was asked, ‘What is two and seven 
more?’ She held up her right hand and three fingers on her left, touched 
the ‘last’ finger and said ‘That’s… wait, is it seven more?’

R Two and seven more

C6 Oh, Ok.

C6 holds up two fingers on her left hand, then pauses. She puts 
up one finger at a time while counting in ones, ending up by 
holding both hands in the air.

R How many do you make that?

C6 (Looks at her hands which are now showing nine fingers) 
Two, two, (quietly counts one to seven nodding at each 
adjacent finger in turn) So that will be two plus, (quietly) 
three, four five, six, wait! Have I counted? I can’t even count 
these now!

R Shall we do it the other way around? What is seven and 
two more?

C6 Yes.

C6 counts up seven fingers, adds another two and holds up nine 
fingers. She does this twice and has to count all before reaching 
her answer, nine. 

C6 That was really confusing for me then.
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While fingers can be a useful marker for keeping track with small amounts 
to count-on, the efficiency of their use relies on being able to distinguish 
which fingers denote the augend and which the addend.

5.3 Further findings
The teaching decisions made and the main findings to date were shared with 
all the participating teachers at the same time, by video link, in week 7 of the 
spring term. They were provided with a summary sheet (see Appendix 2) and 
invited to take an aspect of the work completed so far and explore it further 
in their classes. Each teacher then spent a term exploring their chosen aspect 
and, at a meeting in the summer term week 8, provided detailed feedback. 
This led to some further interesting findings, set out in table 5.1.

Figure 5.11 
An example of children exploring the structure of numbers through 
writing prompted by the teacher modelling
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Table 5.1 
A summary of the focusses and findings of the three participating teachers 
during summer term 2019

Teacher Focus Findings

Teacher 1 Use of small world 
character:

Encouraged explanation.

for playing games Allowed children to play game with character as 
a partner.

for sometimes 
getting things 
wrong

Useful for exploring position and direction: a moving 
character makes it easier to make sense of movements, 
as its position can be viewed from above.

for the children to 
have someone to 
explain things to in 
order to help them.

Children are less worried about having a go and 
making mistakes when moving the character.

Motivated children.

Teacher 2 Cardinal value

Symbolic 
representation

Use of small world 
character

Sometimes the choice of resource for counting can 
distract the children from the mathematics (colourful 
dinosaurs, for instance).

Writing the numbers (teacher and children) to match 
the counts had an impact on children’s understanding 
of the structure of the numbers, and allowed them to 
make connections to things they know (for example, 
connecting ‘3 + 7 = 10’ to ‘43 + 7 = 50’) (see figure 
5.11).

Need to connect context, image, language and 
symbols.

Language is linked to cardinal value and trust. 
‘Do you trust me, that there are seventeen 
apples, no more, no fewer?’

Teacher 3 Counting aloud 
from and to 
different starting 
points

Increased confidence and accuracy in counting through 
larger numbers, across decades and from different 
starting points.

Cardinal value Use of labelled containers leading to increased interest 
in and awareness of written numerals.

Use of small world 
character to count, 
correctly and 
incorrectly

Increased awareness of the processes of counting, 
willingness to both correct and explain.
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6. DISCUSSION AND CONCLUSIONS

We embarked on this study in order to attain a better understanding of how 
variation theory (Marton & Tsui, 2005) might be applied to the teaching of 
early number in year 1 (children aged between five and six). We approached 
this question with the idea that variation in the type of manipulative used 
would expose and highlight the essential features of a mathematical idea 
for the children involved, as well as variation in the choice and sequencing 
of numbers used. In the event, our attending to variation, and to what 
it might mean for working with the youngest learners, highlighted some 
essential features of counting-on and how teaching decisions have an impact 
on children’s understanding of this concept. Attending to the variation in 
counting-on – keeping something the same and changing something else 
– allowed us to better understand what is involved in counting-on and, 
significantly, different ways of noticing the cardinality of the augend. Our 
findings in relation to the two key sub-skills involved in counting-on arose 
from our use of variation.

We appreciate that variation is not the doing or the construction of written 
exercises, nor simply varying the manipulative used. Rather, it is how 
teachers and learners operate with all representations of the mathematics, 
considering what is the same and what is different in order to locate 
underlying structure. For us, the following issues lie at the heart of every 
theory in teaching.

• What is the intended understanding?

• What are the examples, and what are they examples of?

• What are we going to do and say, and to what purpose?

We found that using the selected manipulatives to aid counting-on was 
far more complex than we anticipated. For instance, some resources 
may be unhelpful if, in order to use them to support counting-on, they 
require an understanding of mathematics that the children have not yet 
secured: using bead strings, ten-frames or Numicon with larger augends 
requires children to understand the place value of the number in order 
to represent the augend. Counters, on the other hand, were more useful 
than we had anticipated as they required an understanding of counting 
rather than place value, so when working with larger numbers they could 
be used to represent and abbreviate a larger augend without the children 
having to understand its place-value structure. Our prepared transparent 
tub containing 24 counters, closed and labelled with the correct number 
of counters inside, appeared to play a central role in supporting children 
to realise that the symbolic label represented a group that, if counted, 
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would involve saying the numbers from one to twenty-four, and that 
therefore they did not need to count them.

Figure 6.1 
The transparent, labelled tub containing 24 counters, which proved 
a valuable resource

The counters ‘disappeared’ into the tub, becoming contained as one 
quantity; the label stood as an abbreviation for the count of the group, 
and the children’s focus appeared to move to the addend. The group of 
counters had become unitised and given one label; the children could see 
the group (that is, they could see that there were lots of items contained 
within the tub), and that the label represented the number in the group. 

However, we cannot be sure whether every child realised that if they were 
to count the counters in this tub, the number written on the label would be 
the last number they said. 

We developed this idea of ‘abbreviating’ the augend to the counters not 
being present, by introducing the practice of writing the augend on a 
sticky note, and counting-on up to three from there. Children were able to 
successfully count-on in this way, enthusiastically opting for much larger 
numbers (in the hundreds) when given the choice, even when they found 
this problematic.

Although both researchers suspected that counting-on was difficult before 
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starting work on this project, neither of us – despite having many years of 
experience between us – had fully appreciated its complexity. In particular, we 
did not appreciate the importance of children being able to abbreviate their 
counting by naming the augend and then being able to generalise this as the 
initial quantity in all circumstances and with all numbers, realising that in doing 
so they are naming the cardinal value of the augend.

Secada et al. (1983) successfully taught seven-year-olds who still used 
count-all as their main strategy three sub-skills that the authors argued 
underpinned counting-on. These were:

• continuing the count from an arbitrary point

• switching from the cardinal meaning to the counting meaning of the 
addend (a cardinal-count transition) (see Thompson, 2008, p. 99)

• beginning the count of the addend with the next counting word. 

We recognise these, and tend to agree with Thompson (2013) that 
children in year 1 are too young to be expected to be able to count-on 
reliably. However, we believe that paying attention to our two identified 
sub-skills in year 1 would be valuable. Specifically, these sub-skills are:

• understanding cardinality and abbreviating the augend

• keeping track of

• position in the number system 
• the addend using entities.

Understanding cardinality and abbreviating the augend, and keeping 
track of the addend, includes the following. 

• Understanding the meaning of a number in relation to a set (cardinal 
value), that it represents the total number in the set, and that adding 
to the set changes the number in the set.

• Subitising (recognition) and building on subitising knowledge 
(composition) towards recognition of iconic images (including 
structured manipulatives).

Keeping track of position in the number system is about knowledge 
of the counting sequence, which includes the following.

• Counting aloud from and to different numbers, making connections 
between number sequences. Children do not need to know the place 
value of 45 (as formed by four tens and five ones) in order to count-on 
from 45, for example.

• Identifying ‘start’ and ‘stop’ numbers in counting sequences.

• Reading and interpreting two-digit numbers.
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APPENDIX 1
OPENING AND CLOSING ASSESSMENTS

Opening assessment

Resources:

• list of children identified by teacher with dates of birth

• 2 bags of single colours of counter, 2 different colours

• 1 container of 24 counters labelled “24 counters”

• sheet of A1/2 paper

• recording task sheet for each child.

Researcher responses: only use, ‘Good job’, ‘You’re trying hard’, ‘Thank you’.

Warm up: ‘I am going to be working with you for the next couple of 
weeks and I am interested in what you are thinking about numbers.

Today I am going to ask you a few questions. Now, OK, let’s start!’

Time taken to answer = ‘instant’, ‘hesitate’, ‘laboured’, ‘can’t answer’.
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Task / question Strategy Time Answer

1 Can you fetch me 6 counters to 
put in this dish? (counters of one 
colour from a dish)

How many counters do you have 
there?

Have to recount them? 

2 (Put the 6 counters in a horizontal 
line)

How many counters do you have 
there?

(add 3 more counters of a different 
single colour)

Now how many counters are there 
altogether?

Have to recount them? 
Count all to answer?

 

3 (Remove all counters, but leave 
them available)

If I had 3 cakes on a plate and I 
add another 5 cakes, how many 
cakes are on the plate all together?

Do they get 3 quickly? 
Have to recount them? 
Count all to answer?

4 (Remove all counters, but leave 
them available. Produce a labelled 
jar of 24 single-coloured counters)

Here is a jar of 24 counters. I have 
counted them all and I know there 
are 24 here. Look there’s a label 
saying 24.

Now I am going to add 3 more 
(produce 3 in a different colour), 
How many will there be in the jar?

What do they do? 
Count all? Are the 3 
the last 3 they count?

5 (Remove all counters and props)

So, what is 5 and 3 more?

6 What is 2 and 7 more?
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Concluding assessment

Resources:

• list of children identified by teacher with dates of birth

• three tubs, counters in each tub the same colour, with labels 24, 45, 32 

• one bowl of counters, single colour, different colour to tubs

• Milo

• sheet of A1/2 paper

• recording task sheet for each child.

Researcher responses: only use, ‘Good job’, ‘You’re trying hard’, ‘Thank you’.

Warm up: ‘Hello – how have you been getting on?’

Time taken to answer = ‘instant’, ‘hesitate’, ‘laboured’, ‘can’t answer’.

Task / question Strategy Time Answer

1 Here is a tub of 24 counters. Look 
there’s a label saying 24. How 
about we get all the counters out, 
how many would there be?

2 So we’ve got our tub of 24 
counters. Now I am going to add 3 
more (place 3 in a different colour 
by the tub), How many will there 
be altogether?

What do they do? 
Count all? Are the 3 
the last 3 they count?

3 (Switch tubs.)

Milo has a tub of 45 and counts 
three more (three more are set 
out) 45, 46, 47 (Milo jumps as he 
counts). Do you agree with him?

4 Here is a tub of 32 counters. If you 
added five more how many would 
there be altogether?
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APPENDIX 2
OBSERVATIONS FROM TEACHING SESSIONS

Sub-skills of counting on

1. Seeing separate items as one quantity – with any size of group. 
Working on accepting cardinal values of larger numbers as well 
as small numbers.

2. Becoming familiar with the patterns in our number system by oral 
counting up and back from different places within 100.

3. Practice reading and writing two-digit numbers.

4. Keeping track.

Key teaching decisions

Small world character
The introduction of another person into the group, who might not understand, 
who might get things right or wrong, provides opportunities for the children to 
explain and to focus on what is involved in counting-on. 

Resource choices
The children do not need to understand the cardinal value of 45 in order to 
count on from 45; resources that are unstructured (counters, for example) 
can be used to represent a number without having to understand the place-
value structure of the number by putting them in a labelled pot. Using a 
second colour of counter for the second quantity helps to focus on counting-
on; placing these counters singly encourages counting-on and is different to 
placing them in one go or trying to work it out without three objects to count.

Number choices
This includes the choice of starting numbers and finishing numbers when 
counting, and drawing attention to these. Choosing connected counting 
strands – such as 7–16, 47–56 or 147–156 – allowed the children to notice 
and make connections. In addition situations, a larger augend and a small 
addend encouraged the children to focus on counting-on. Decisions were 
made regarding when to write numbers to match the maths, when to ask 
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the children to write numbers, and when not to write numbers.

Language choices
Asking ‘what if...?’ links to variation. What if there were 35 penguins? What if 
it was cats instead of penguins? What if four more came along? There was an 
expectation that the children would explain their thinking, asking questions 
such as, ‘How do you know?’, ‘How could we find out?’, ‘Do you agree with 
Milo? Why?’. Repeating/echoing the children’s own language was also used 
to support the whole group to think.

Asking the children to make decisions
This is about application of understanding, allowing children to test out their 
thinking, to move towards generalising and to demonstrate understanding. 
This included the children using sticky notes for suggesting numbers for Milo 
to count on from; free writing and drawing at the end of the sessions; and the 
suggestion of stories to match given numbers.

Creating familiarity
Establishing familiarity with context, resources, small world characters and 
free writing and drawing is necessary if the children are to be able to attend 
to the mathematics.








